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A model is proposed to investigate the contact kinematics of a frictional
constraint experiencing two-dimensional relative motion. In this model, a contact
plane is defined and its orientation is invariant. In addition, the contact normal
load is assumed constant. In this study, analytical criteria are developed to
determine the transitions between stick and slip which characterize how the
friction force relates to the two-dimensional relative motion. Using the stick–slip
transition criteria, a stick–slip diagram of elliptical motion is developed. This
stick–slip diagram illustrates the fundamental characteristics of the two-dimen-
sional contact kinematics when the relative motion has an elliptical trajectory.
Fourier series expansion is employed to divide the induced periodic friction force
into two components: non-linear spring resistance and friction damping. In this
study, a set of non-linear functions that relate the non-linear spring resistance and
friction damping to the elliptical motion are developed. It is shown that these
non-linear functions can be analytically derived for the two extreme cases: circular
motion and one-dimensional motion. The single-term harmonic balance scheme
along with the non-linear spring resistance and friction damping of the frictional
constraint then used to calculate the resonant response of a frictionally
constrained two-degree-of-freedom oscillator. The accuracy of the method is
demonstrated by comparing the results with those of the direct time integration
method.
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1. INTRODUCTION

Mechanical systems in which moving components are mutually constrained
through frictional contacts often lead to complex contact kinematics. If the relative
motion of the contacting surfaces follows a straight line, the motion is said to be
one-dimensional [1]. This case arises from either the specific design of friction
contact [2–5] or from the simplification of the analysis [6–9]. More generally, the
point of contact can follow a path which is not a straight line. For the case of
a periodic response, the path will form a closed loop and the relative motion is
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said to be two-dimensional [10]. In this paper the contact kinematics of a frictional
constraint experiencing two-dimensional relative motion is investigated.

The dry friction dampers used in turbomachinery to reduce the turbine blade
vibration often exhibit two-dimensional contact kinematics due to the existence
of the interblade phase angle [11] and/or possible multiple mode vibration [10].
This motivates the development of a two-dimensional friction force model that can
be used to predict the non-linear spring resistance and friction damping of the
frictional constraint so as to investigate the resonant response of a frictionally
constrained structure.

An interpolation method for estimating the friction force when the friction
contact undergoes two-dimensional stick–slip motion in steady state was presented
in our earlier work [10]. In reference [10], analytical criteria that determine the
transitions between stick and slip were not available. Therefore, the relationship
between the friction force and the displacement could not be established
rigorously. In section 2, a model is proposed to investigate the contact kinematics
of a frictional constraint experiencing two-dimensional relative motion. In this
study, analytical criteria are developed to determine the transitions between stick
and slip which characterize how the friction force relates to the two-dimensional
relative motion. In section 3, using the stick–slip transition criteria, a stick–slip
diagram of elliptical motion is developed. This stick–slip diagram illustrates the
fundamental characteristics of the two-dimensional contact kinematics when the
relative motion has an elliptical trajectory. In section 4, Fourier series expansion
is employed to divide the induced periodic friction force into two components:
non-linear spring resistance and friction damping. In this study, a set of non-linear
functions that relate the non-linear spring resistance and friction damping to the
elliptical motion are developed. It is shown that these non-linear functions can be
analytically derived for the two extreme cases: circular motion and
one-dimensional motion. In section 5, the single-term harmonic balance scheme
along with the non-linear spring resistance and friction damping of the frictional
constraint is then used to calculate the resonant response of a frictionally
constrained two-degree-of-freedom oscillator. The accuracy of the method is
demonstrated by comparing the results with those of the direct time integration
method. The conclusions are summarized in section 6.

2. TWO-DIMENSIONAL CONTACT KINEMATICS

Figure 1 depicts a model of the frictional constraint experiencing
two-dimensional relative motion. In this model, a contact plane is defined and its
orientation is invariant. In addition, the contact normal load is assumed constant.
Based on this model, the purpose of this study is to understand how the friction
force relates to the two-dimensional relative motion. Therefore, one of the two
contacting surfaces can be considered as the ground. This model consists of two
components: a massless elastic element accounting for the compliance of the
frictional interface and a friction element obeying the Coulomb friction law. It
should be pointed out that the compliance of the frictional interface can be an
important parameter that controls the effectiveness of a frictional constraint when
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the attenuation of resonant response is desired [8]. In this study, the flexible
element is characterized by a 2×2 stiffness matrix k, and the friction element can
be modelled as, under the assumption of the Coulomb friction law, a contact point
O with friction coefficient m. In this paper, u denotes the input relative motion,
w the slip motion of the contact point, and f the induced friction force. These
vectors are all on the contact plane. The normal load n is a constant scalar. For
simplicity, three dimensionless variables are defined: ū= ku/mn, w̄= kw/mn and
f�= f/mn.

2.1.  

The dimensionless friction force, acting on the ground, can be expressed as

f�= ū− w̄. (1)

When the vibratory motion is small, the contact point sticks and the friction force
is proportional to the displacement ū with reference to w̄· = 0. According to the
Coulomb friction law, the magnitude of the friction force is always limited by the
slip load mn, therefore =f�=Q 1. During the course of vibration, the interface may
reach a point where the friction force tends to exceed the slip load and begin to
slip. Subsequently, the friction force remains equal to the slip load, and slip takes
place along the direction of the friction force until the contact point sticks again.
In other words, the stick and slip condition can be expressed as follows:

stick condition: =f�= ū− ū0 + f�0=Q 1, w̄· = 0; (2)

slip condition: f�= w̄· /=w̄· =, w̄· $ 0; (3)

Figure 1. A model of the friction interface experiencing 2-D contact kinematics.
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where ū0 and f�0 are the respective initial values of ū and f� at the beginning of the
stick state.

2.2. – 

When analyzing the stick–slip behavior of a friction interface experiencing
two-dimensional motion, it is essential to predict the stick–slip transition so as to
accurately evaluate the induced friction force. There are two types of transition,
namely stick-to-slip transition and slip-to-stick transition. The first one can be
determined by the condition when the amplitude of the friction force tends to
exceed the slip load. On the other hand, the criterion of the second one
(slip-to-stick transition) is not as straightforward as the simple ‘‘rule of thumb’’
that the slip-to-stick transition occurs when the input relative motion reverses its
direction. This ‘‘reversion rule’’ has been widely used in the case in which the
interface experiencing one-dimensional relative motion [4, 8, 9, 12]. However, for
the two-dimensional contact kinematics, the input relative motion follows a
two-dimensional trajectory, which never actually reverses its direction but keeps
moving in a closed path. In fact, the above mentioned stick and slip conditions
suggest that the slip-to-stick transition can be determined when w̄· = 0, but how
to relate w̄· to the input relative motion ū needs to be further addressed.

2.2.1. Stick-to-slip transition

Given an initial state, ū0 and f�0, the stick-to-slip transition occurs when
=f�= ū− ū0 + f�0==1 and =f�·=q 0. This transition condition can be used to determine
when the contact point starts to slip for any input motion ū. When considering
an elliptical relative motion, the criterion can be transformed into a quartic
equation [13], whose solutions are available in the analytical form [14]. Since
multiple solutions may appear, the redundant solutions can be eliminated by
considering the constraint =f�·=q 0 that guarantees the magnitude of the friction
force to have a tendency to exceed the slip load. Figure 2 exemplifies graphically
how the stick-to-slip transition can be obtained. In this figure, the transition angle
u1 can be found to be the moment when the elliptical trajectory ū− ū0 + f�0

intersects with the unit circle.

2.2.2. Slip-to-stick transition

During the slip state, according to the Coulomb friction law as described in
equation (3), the slip velocity of the contact point w̄· is along the direction of the
friction force, i.e.,

w̄· = cf�
·
, where cq 0. (4)

Since the magnitude of the friction force is constant, one has

f�T f��=0. (5)

Considering equation (4) and the time differentiation of equation (1), the above
equation becomes

f�Tū· − cf�T f�=0. (6)
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Figure 2. Stick-to-slip transition.

Since f�T f�=1, one can have c as follows:

c= f�Tū· . (7)

Therefore, the slip velocity of the contact point during the slip state can be
expressed as

w̄· = f�Tū· f�. (8)

Substituting equation (8) into f�· = ū· − w̄· yields

f�· = ū· − f�Tū· f�. (9)

From equation (8), the slip-to-stick transition criterion w̄· = 0 implies

f�Tū· =0. (10)

However, it should be noted that f� still remains undetermined at this stage. To
obtain f�, the initial value problem involving equation (9) and the known initial
friction force at the beginning of the slip condition can be solved using a numerical
integration scheme. Once the friction force is obtained, equation (10) can be used
to predict the occurrence of the slip-to-stick transition.

3. STICK–SLIP DIAGRAM OF ELLIPTICAL MOTION

When the input relative motion is small, the friction contact is stuck and merely
contributes a linear spring resistance. In this case the resonant response can be
easily derived. When the relative motion is sufficiently large to cause slip, an
analytical solution is often not available. In this case the steady state response can
be determined by using either the time integration method or the harmonic balance
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scheme. In this paper, the harmonic balance scheme will be employed. Therefore,
it is necessary to derive the induced friction force when given an elliptical relative
motion.

The dimensionless input motion is now assumed to have an elliptical trajectory.
Using a local co-ordinate system based on the principal directions of the elliptical
motion, the input motion can be expressed as

ū=[a cos u b sin u]T and ū· = [−a sin u b cos u]Tu� , (11)

where u=vt+f and f is the initial phase of the elliptical motion. When the
input motion causes the friction contact to slip, the friction force can be expressed
as

f�=[cos 8 sin 8]T and f�
·
= [sin 8 cos 8]T8̇. (12)

Using equation (9), one can find that the changing rate of the friction force is
characterized by

d8

du
=

a+ b
2

cos (u−8)−
a− b

2
cos (u+8). (13)

Similarly equation (7) yields that

c=v$−a+ b
2

sin (u−8)−
a− b

2
sin (u+8)%. (14)

Using equation (13), the induced friction force during the slip state can be
calculated. Since c has to be positive during the slip state, when c crosses zero the
friction contact changes from slip state to stick. The steady state friction force can
be attained using a ‘‘state-by-state simulation’’ by calculating the stick–slip
transitions sequentially. One example of the resulting friction force by the
state-by-state simulation is shown in Figure 3. In this figure, the unit circle limits
the range of the dimensionless friction force. The trajectory inside the unit circle
represents a stick state, while the trajectory falling on the unit circle represents a
slip state. The simulation starts from a stick state with zero friction force. The
stick-to-slip transition u1 can be predicted by solving the corresponding
stick-to-slip transition criterion when the elliptical trajectory ū− ū0 + f�0 intersects
with the unit circle. The simulation proceeds to a slip state until the next
slip-to-stick transition u2 is encountered. During a slip state, equation (13) is used
to calculate 8 and equation (14) is used to calculate c. The slip-to-stick transition
u2 is encountered when c crosses zero. When it happens, the simulation starts a
stick state again. The simulation continues in the same matter to find the following
transitions (u3, u4, . . . , etc.) until the steady state friction force is reached. As can
be seen from this resulting trajectory, the steady state friction force is always
obtained within a few cycles.

Three types of friction force trajectory are identified and shown in Figure 4.
When the amplitude of the input relative motion is small, the interface remains
stuck all the time, and as a result, the fully stuck trajectory follows an ellipse. This
is shown in Figure 4(a). As the amplitude of the relative motion increases to cause
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the induced friction force to exceed the slip load, slip takes place. In this case, the
interface undergoes an alternating stick and slip motion and the resulting
trajectory is shown in Figure 4(b). When the amplitude of the relative motion
exceeds a certain level, the interface is fully slipping, and the resulting friction force
has a circular trajectory. This is shown in Figure 4(c). Figure 5 shows a stick–slip
diagram in terms of the two principal axes of the input elliptical motion. Since
a is the length of the major principal axis, it is clear that ae b. In this figure, the
two-dimensional motion degenerates to one-dimensional motion when b=0, and
becomes circular motion when b= a. It can be seen that the friction contact will
be fully stuck when aQ 1. If aq 1, the friction contact experiences an alternating
stick–slip motion when b is small, however, it becomes fully slipping as b increases
and exceeds a critical value. This stick–slip diagram illustrates the fundamental
characteristics of the two-dimensional contact kinematics when the relative motion
has an elliptical trajectory.

4. NON-LINEAR SPRING RESISTANCE AND FRICTION DAMPING

In this study, a set of non-linear functions that relate the non-linear spring
resistance and friction damping to the elliptical motion are developed. It is shown
that these non-linear functions can be analytically derived for the two extreme
cases: circular motion and one-dimensional motion.

Figure 3. The resulting friction force trajectory using state-by-state simulation.
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Figure 4. Three types of steady state friction force trajectories: (a) fully stuck; (b) stick–slip; (c)
fully slipping.

4.1.  

Once the steady state friction force is determined, a one-term Fourier series
expansion can be employed to divide the periodic friction force into two
components. The first one is in phase with the input motion and provides
additional spring resistance to the structure constrained by the friction contact.
The second component is 90° out of phase with the input motion and adds friction
damping to the structure:

f�=$f� u

f� v%1$f� u
s cos u− f� u

c sin u

f� v
s sin u+ f� v

c cos u%. (15)
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Figure 5. Stick–slip diagram.

In this expression, the u and v directions are defined along the principal major and
minor axes of the dimensionless relative motion, respectively. The results of the
dimensionless spring resistance ( f� u

s and f� v
s) and friction damping (f� u

c and f� v
c) are

Figure 6. Dimensionless spring resistance and friction damping: (a) spring resistance in the u
direction; (b) friction damping in the u direction; (c) spring resistance in the v direction; (d) friction
damping in the v direction.
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depicted in terms of a and b in Figure 6, in which a is the amplitude of the principal
major axis, b the amplitude of the principal minor axis, and ae b. In the figure,
the calculated values are plotted as functions of a and b that range within
0E aE 4 and 0E bE a. For each plot, there are two boundary curves
corresponding to the two extreme cases. The one having l= b/a=0 is the case
of one-dimensional motion and the other l= b/a=1 is of circular motion. With
these dimensionless functions, the induced friction force can be estimated as

f=$f u

f v%1 mn$f� u
s (a, b) cos u− f� u

c(a, b) sin u

f� v
s(a, b) sin u+ f� v

c(a, b) cos u%. (16)

4.2.  

If b equals a, the elliptical motion becomes circular motion [1]. In this case, the
friction contact is fully stuck when aQ 1. If ae 1, the friction contact can slip
and equations (13) and (14) become

d8

du
= a cos (u−8) (17)

and

c=−av sin (u−8). (18)

Since c has to be positive during the slip state, it can be shown that the solutions
of these two equations are

8= u+cos−1 (1/a) (19)

and

c=vza2 −1. (20)

It can be seen from equation (20) that once the friction contact begins to slip, it
will continue to slip for c is always positive. In other words, the friction contact
suddenly changes from fully stuck to fully slipping when a increases and exceeds
1. However, from equation (19), the phase angle between the induced friction force
and the input relative motion is cos−1 (1/a). It indicates that when a equals 1,
although the friction contact slips all the time, the phase angle equals zero and
the friction force acts purely as a spring constraint. When a becomes larger, the
phase angle approaches 90° and the friction force behaves like a damping force.
Since the solution in equation (19) is exact, Fourier series approximation is not
necessary and the induced friction force can be expressed as

f�=$f� u

f� v%=$cos 8

sin 8%=$(1/a) cos u−z1− (1/a)2 sin u

(1/a) sin u+z1− (1/a)2 cos u%. (21)
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Consequently, the dimensionless spring resistance and friction damping of circular
motion have the exact expression

f� u
s (a)= f� v

s(a)=
1
a

(22)

and

f� u
c(a)= f� v

c(a)=z1− (1/a)2. (23)

4.3. - 

If b equals zero, the elliptical motion becomes one-dimensional motion [5, 8].
From the stick–slip diagram shown in Figure 6, it is evident that a fully slipping
trajectory can not happen in the case of one-dimensional motion. Again, the
friction contact is fully stuck when aQ 1. If ae 1, the friction contact can slip
and equations (13) and (14) become

d8

du
= a sin u sin 8 (24)

and

c=−av sin u cos 8. (25)

When the friction contact slips, according to equation (12) sin 8 has to be zero.
From equation (25), it is evident that slip-to-stick transition occurs at u=0 and
u= p. It is evident that the slip-to-stick transition occurs when the input relative
motin reverses its direction. Since before transition occurs c has to be positive, the
friction force, cos 8, equals 1 at u=0 and −1 at u= p. With this information,
the induced friction force can be easily derived. Starting from u=0, the friction
contact is stuck and according to equation (2) the friction force can be expressed
as

f� u = a(cos u−1)+1. (26)

Equation (26) is valid until stick-to-slip transition occurs. Using the stick-to-slip
transition condition, the transition angle can be found to be

u1 = cos−1 01−
2
a1. (27)

After this transition angle, the friction force, f� u, equals −1 until the friction
contact sticks again at u= p. Similarly, the friction force for the second half cycle
can be found. The resulting periodic friction force can then be decomposed into
non-linear spring resistance and friction damping using a one-term Fourier series
expansion. Following the expression of equation (15), one can find

f�u
s (a)=

a
p

[u1 −0·5 sin 2u1] (28)
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Figure 7. A two-degree-of-freedom oscillator under a friction constraint.

and

f� u
c(a)=

4
p $1−

1
a%. (29)

It is evident that f� v equals zero for the case of one-dimensional motion.

5. FORCED RESPONSE OF A TWO-DEGREE-OF-FREEDOM OSCILLATOR

A two-degree-of-freedom oscillator, depicted in Figure 7, is employed to
investigate the influence of the two-dimensional frictional constraint on the
system’s resonant response.

5.1.    

The oscillator that can displace in the x–y plane is brought into contact with
the ground by applied constant normal load n and is subjected to external
harmonic excitation that causes vibration. Instead of using the conventional
mass–spring–dashpot notation, this two-degree-of-freedom oscillator can be
described by its two-mode modal information. Its system parameters along with
the excitation are shown in Table 1. The friction contact between the oscillator
and the ground is modelled as a Coulomb friction contact plus a flexible element,
similar to the one shown in Figure 1. The parameters of the friction interface used
in this investigation are: m=0·5 and k=diagonal [20 20].

T 1

Modal information of the 2DOF oscillator and the excitation

Mode Mass Frequency (Hz) Damping ratio Mode shape Excitation

1 1·0 0·9 0·02 (1 1)T 1·0{0°
2 1·0 1·1 0·02 (1 −1)T 1·0{0°
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Figure 8. Resonant responses of the 2DOF oscillator. Values of n: Q, 0·0; W, 0·5; R, 1·0; E,
2·0; r, 5·0; t,10; e, 15; q, 20; w, fully stuck.

5.2.  

It is assumed that after a sufficiently long time, a steady periodic motion with
the same period as that of the excitation is established. The single-term harmonic
balance scheme [4, 15] along with those non-linear functions that represent the
non-linear spring resistance and friction damping of the frictional constraint is
used to calculate the resonant response of the two-degree-of-freedom oscillator.
Using this approach, the non-linear differential equations of the system’s motion
are converted to a set of non-linear algebraic equations in terms of the unknown
motion’s amplitude and phase. These non-linear algebraic equations are then
solved iteratively to yield solutions.

The predicted resonant response of this system is shown in Figure 8 as
continuous curves, each of which corresponds to a specific normal load. Since the
characteristics of the resulting response along the y direction is similar to that of
the response along the x direction, only the amplitude of the response along the
x direction is shown in this figure. In the figure, one can observe two limit cases,
namely the zero-normal-load case and the fully-stuck case. Both cases are linear
for the non-linear damping does not appear in the analysis. The zero-normal-load
case occurs when the normal load is not present and therefore the frictional
interface is not in effect. Two resonant frequencies that correspond to the natural
frequencies of the system can be clearly seen. When the normal load exceeds a
certain value (nq 30 in this example), the interface remains fully stuck. In this
case, the friction interface does not dissipate energy but provides additional
stiffness that arises from the compliance of the interface to the system to cause
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higher resonant frequencies. This ‘‘frequency shifting’’ can be seen as the natural
frequencies of the two vibration modes of the system (0·9 and 1·1 Hz) are shifted
to 1·35 and 1·49 Hz, respectively. In between these two linear cases, the resonant
frequency increases as the normal load increases, and the resonant response is
damped as a result of the slip motion occurring in the friction interface. As n=2,
the effectiveness of the frictional constraint reaches the maximum.

From the results, it can also be observed that most of the responses consist of
two peaks that associate with the two vibration modes, except for the cases of
n=2 and 5. As a matter of fact, it can be found that in the vicinity of the optimal
normal load, the response only contains one resonance, indicating that the two
vibration modes are strongly coupled together. In these situations, the
two-dimensional motion is expected to be significant; this argument can be
validated by examining the aspect ratio, l= b/a, of the resulting elliptical
trajectory. For each response curve in Figure 8, the aspect ratios at the peaks are
shown in Table 2. For example, when n=5, the peak occurs at v=1·39 Hz and
the corresponding aspect ratio is 0·78. The results indicate that, in general, when
the friction interface is highly effective, it may not be a good idea to assume that
the relative motion at the friction is one-dimensional.

5.3.         

 

The harmonic balance method approximates the induced periodic friction force
by truncating its Fourier series after the fundamental terms to calculate the steady
state solutions. Although this procedure is computationally efficient, its accuracy
needs be validated. This can be done by comparing the approximate solutions with
those from the direct time integration method. In Figure 8, the discrete data points
represent the time integration solutions. All the comparisons are made in the
frequency range near resonance.

T 2

Aspect ratio of the resulting elliptical trajectory

Normal load l

0 0·08 (0·90)a 0·12 (1·10)
0·5 0·14 (0·91) 0·23 (1·10)
1 0·32 (0·93) 0·42 (1·10)
2 0·35 (1·26)b

5 0·78 (1·39)
10 0·34 (1·40) 0·29 (1·44)
15 0·17 (1·38) 0·24 (1·47)
20 0·16 (1·37) 0·19 (1·48)

q30 0·12 (1·35) 0·16 (1·49)
a The numbers in the parentheses are the resonant frequencies in Hz.
b The location of the resonance is unclear due to the absence of a notable

peak. The aspect ratio is selected to be the maximum over the range of the
flat response.
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For the zero-normal-load and fully-stuck cases, the exactness of the
approximate solutions is expected because the system is linear under both
conditions. When the problem becomes non-linear for the cases between the
two limiting cases, the approximate procedure still shows very good
accuracy. There are two reasons. First, the fact that the resulting periodic
friction force for two-dimensional motion is closer to pure harmonic force
when compared to that of one-dimensional motion. Second, the super-
harmonic terms of the periodic friction force is attenuated by the low-pass
filtering nature of the two-degree-of-freedom oscillator. As a result, the resulting
motion has a trajectory closely resembling an ellipse. However, when dealing
with more complex systems the use of multi-harmonic balance method may
be necessary [16].

6. CONCLUSIONS

A model is proposed to investigate the contact kinematics of a frictional
constraint experiencing two-dimensional relative motion. In this model, a contact
plane is defined and its orientation is invariant. In addition, the contact normal
load is assumed constant. This model consists of two components: a massless
elastic element accounting for the compliance of the frictional interface and a
friction element obeying the Coulomb friction law. In this study, analytical criteria
are developed to determine the transitions between stick and slip which
characterize how the friction force relates to the two-dimensional relative motion.
Using the stick–slip transition criteria, a stick–slip diagram of elliptical motion is
developed. This stick–slip diagram illustrates the fundamental characteristics of
the two-dimensional contact kinematics when the relative motion has an elliptical
trajectory.

Fourier series expansion is employed to divide the induced periodic friction
force into two components. The first one is in phase with the input motion and
provides additional spring resistance to the structure constrained by the friction
contact. The second component is 90° out of phase with the input motion and adds
friction damping to the structure. In this study, a set of non-linear functions that
relate the non-linear spring resistance and friction damping to the elliptical motion
are developed. It is shown that these non-linear functions can be analytically
derived for the two extreme cases: circular motion and one-dimensional motion.

The single-term harmonic balance scheme along with the non-linear spring
resistance and friction damping of the frictional constraint is then used to calculate
the resonant response of a frictionally constrained 2DOF oscillator. The system
was selected to have two closely spaced natural frequencies, which simulate the
coupling of the bending and torsional modes of a turbine blade. It was found that
the aspect ratio of the elliptical response trajectory is significantly large, especially
when the frictional constraint is highly effective. The accuracy of the method is
demonstrated by comparing the results with those of the direct time integration
method.
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